Published

mmFall: Fall Detection using 4D mmWave Radar and a Hybrid Variational RNN AutoEncoder

F. Jin, A. Sengupta, S. Cao

IEEE Transactions on Automation Science and Engineering, 2022 , Vol. 19 (2) , pp. 1245-1257

Abstract

mmFall presents a hybrid variational RNN autoencoder architecture for fall detection using 4D mmWave radar. The system analyzes micro-Doppler and range-Doppler features with temporal modeling through RNN variants, achieving robust real-time fall detection while maintaining privacy. Achieves 98% detection rate out of 50 falls with only 2 false alarms.

Citation

F. Jin, A. Sengupta, S. Cao. "mmFall: Fall Detection using 4D mmWave Radar and a Hybrid Variational RNN AutoEncoder." IEEE Transactions on Automation Science and Engineering 19(2): 1245-1257, 2022. DOI: 10.1109/TASE.2020.3042158

Quick Links

Details

Year
2022
Published In
IEEE Transactions on Automation Science and Engineering
Volume
19
Issue
2
Pages
1245-1257
DOI
10.1109/TASE.2020.3042158